Visualization of Genome Signatures of Eukaryote Genomes by Batch-Learning Self-Organizing Map with a Special Emphasis on Drosophila Genomes

نویسندگان

  • Takashi Abe
  • Yuta Hamano
  • Toshimichi Ikemura
چکیده

A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Bioinformatics Method for Efficient Knowledge Discovery by BLSOM from Big Genomic Sequence Data

With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), whi...

متن کامل

Tracking Evolutionary Links Among Coronavirus Types Using Self-Organizing Neural Networks

The Coronaviruses are worldwide in distribution and caused an epidemic in China in 2003. The rapidly mutating Coronaviruses spreads fast by taking different forms and infects not only human beings but also cattle, pigs, rodents, cats, dogs and birds. In fighting against these viruses, it is important to elucidate the evolutionary links among the different types of Coronaviruses. This article ex...

متن کامل

DroSpeGe: rapid access database for new Drosophila species genomes

The Drosophila species comparative genome database DroSpeGe (http://insects.eugenes.org/DroSpeGe/) provides genome researchers with rapid, usable access to 12 new and old Drosophila genomes, since its inception in 2004. Scientists can use, with minimal computing expertise, the wealth of new genome information for developing new insights into insect evolution. New genome assemblies provided by s...

متن کامل

A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM)

With the remarkable increase of genomic sequence data of microorganisms, novel tools are needed for comprehensive analyses of the big sequence data available. The self-organizing map (SOM) is an effective tool for clustering and visualizing high-dimensional data, such as oligonucleotide composition on one map. By modifying the conventional SOM, we developed batch-learning SOM (BLSOM), which all...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014